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Abstract—This paper presents a systematic methodology for
designing super-twisting observers. Thanks to a state transfor-
mation, the estimation error dynamics can be cast in a Linear
Parameter Varying (LPV) framework and a design procedure
based on LMIs can be developed ensuring practical stability and
finite time convergence. This approach is applied to the design
of 3 super-twisting observers for estimating the reaction rates
in a lipase production process from olive oil by Candida rugosa.
The estimated rates can be used in an asymptotic observer to
reconstruct the component concentrations.

Index Terms—state estimation, sliding mode observers, robust
control, LMIs, biotechnology.

I. INTRODUCTION

Although they have been widely applied to monitoring
of bioprocesses [1], [2], an inherent drawback of classical
state estimation algorithms, such as Extended Kalman filter,
is their dependency on the model accuracy. As bioprocess
models are usually complex, nonlinear and partially known (in
their parameters or even structure), the need for more robust
strategies appears naturally.

The use of super-twisting observers (STOs) for kinetic
rate estimation has been successfully investigated in [3]–[5].
However, to the best of our knowledge, no systematic design
procedure for the gains of the STOs is available yet, and
the design usually proceeds based on the user expertise, in
an ad-hoc manner. The objective of this study is twofold:
(a) to present a robust design STO procedure, leading to
a computational algorithm and (b) to develop a monitoring
system for a lipase production process from olive oil by
Candida rugosa, based on the design of 3 STOs for the several
reaction rates.

This paper is organized as follows. The next section in-
troduces the methodology for STO gain computation, while

section III describes the bioprocess case study and section IV
the development of a STO-based monitoring scheme. Finally
some conclusions are drawn.

II. STO GAIN DESIGN

Let us consider a generic second-order system:

ξ̇1(t) = b(t, y, u)ξ2(t) + h1(t, y) + f1(t, ξ), ξ1(0) = ξ1,0, (1a)

ξ̇2(t) = h2(t, y) + f2(t, ξ), ξ2(0) = ξ2,0, (1b)
y(t) = ξ1(t), (1c)

where ξ := [ ξ1 ξ2 ]T ∈ Ξ ⊂ R2 is the state vector; u(t) ∈
U ⊂ R and y(t) ∈ Y ⊂ R are respectively the input and
output signals assumed to be measurable; and Ξ, U and Y
are given compact sets in the state-, input- and output-space,
respectively. h1 and h2 encompass the part of dynamic that
is perfectly known (measurable) and f1 and f2 capture the
uncertainty in the model.

Assumption 1. The parameter b(t, y, u) is a bounded positive
measurable function of (t, y, u) such that 0 < b ≤ b(t, y, u) ≤
b for all t ≥ 0, y ∈ Y with

Y := {y ∈ R : y = Cξ, ξ ∈ Ξ}, C = [ 1 0 ], (2)

and u ∈ U , where b, b are known positive constants.

The following observer is considered:
˙̂
ξ1 = −k1φ1(ξ̃1) + b(t, y, u)ξ̂2 + h1(t, y) + f̂1(t, ξ̂), ξ̂1(0) = ξ̂1,0,

˙̂
ξ2 = −k2φ2(ξ̃1) + h2(t, y) + f̂2(t, ξ̂), ξ̂2(0) = ξ̂2,0,

ξ̃1 = ξ̂1 − y (3)

where ξ̂ := [ ξ̂1 ξ̂2 ]T ∈ Ξ̂ ⊂ R2 is the STO state vector;
f̂1(t, ξ̂) and f̂2(t, ξ̂) are f1(t, ξ) and f2(t, ξ) estimates, k1 and
k2 are the observer gains. The correction terms φ1 and φ2
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are switching functions to be specified later in this paper. The
estimation error reads:

ξ̃ =
[
ξ̃1 ξ̃2

]T
, ξ̃i = ξ̂i − ξi, i = 1, 2. (4)

For illustration, the following definitions for φ1 and φ2 are
considered for the classical super-twisting observer

φ1(ξ̃1) =

√
|ξ̃1| sign(ξ̃1), φ2(ξ̃1) =

1

2
sign(ξ̃1). (5)

Then, the estimation error dynamics follow:{
˙̃
ξ1 = −k1φ1(ξ̃1) + b(t, y, u)ξ̃2 + δ1(t), ξ̃1(0) = ξ̃1,0,
˙̃
ξ2 = −k2φ2(ξ̃1) + δ2(t), ξ̃2(0) = ξ̃2,0,

(6)

where ξ̃ ∈ Ξ̃ ⊂ R2, Ξ̃ is a given compact set containing ξ̃ = 0,

δi(t) = f̂i(t, ξ̂)− fi(t, ξ), i = 1, 2. (7)

Assumption 2. There exist bounded functions g1(t), g2(t) and
positive scalars α1, α2 such that

δi(t) = gi(t)φi(ξ̃1), |gi(t)| ≤ αi, i = 1, 2, ∀ ξ̂ ∈ Ξ̂, ξ ∈ Ξ.
(8)

The change of variables Φ : Ξ̃→ R2

ζ = Φ(ξ̃) =

[
φ1(ξ̃1)

ξ̃2

]
=

[
ζ1
ζ2

]
. (9)

allows for the error dynamics to be described almost every-
where by the state-space representation:

ζ̇ =
∂φ1

∂ξ̃1

(
A(g1, g2, b)−KC

)
ζ (10)

where C is as in (2), and

A(g1, g2, b) =

[
g1(t) b(t, y, u)
g2(t) 0

]
, K =

[
k1

k2

]
. (11)

Notice in (10) that ζ̇ is properly defined in Z \ T with
T := {ζ ∈ R2 : ζ1 = 0} and Z ⊂ R2 being a compact
set containing ζ = 0 and defining the admissible ζ-space.

We then choose the following Lyapunov function candidate:

V (ζ) = ζTPζ, P = PT > 0, (12)

(12) is monotonic decreasing and the estimation error dynam-
ics is locally stable [6] if V̇ (ζ) < 0, for all ζ ∈ Z \ T .

Afterwards, we introduce a set of LMIs allowing the com-
putation of the observer gain matrix K and ensuring both local
asymptotic stability and a finite-time convergence of the STO.
Theorem 1. Consider the system (6) with (5), and the assump-
tions A1 and A2. Suppose there exist matrices P = P ′ > 0
and L, and a scalar λ3 > 0 satisfying the following LMI
constraints:

A(g1, g2, b)
TP+PA(g1, g2, b)−LC−CTLT+λ3I < 0, ∀ (g1, g2, b) ∈ V

(13)
where V is the set of all vertices of the meta set [−α1, α1]×
[−α2, α2] × [b, b]. Then, the origin of the error dynamics (6)
with K = P−1L is locally asymptotically stable and ξ̃1(t)
and ξ̃2(t) converge to zero in a finite time Tc ≤ T ∗c with:

T ∗c =
2

γ

√
V (0), γ =

√
λ1λ3

λ2
, (14)

where V (0) = V (ζ0) is the initial value of the Lyapunov
function defined in (12) in some vicinity of ζ = 0, and λ1

and λ2 are respectively the smallest and largest eigenvalues
of P .

The proof of the above theorem is provided in [7].
However, this result is not yet directly implementable as ζ0,

thus V (0), is unknown a priori. Let us define :

R(ζ) := {ζ ∈ Z : V (ζ) ≤ 1}. (15)

Where the set R(ζ) provides an estimate of the stability
region. R(ζ) will be positive invariant if V (ζ) is monotonic
decreasing along the trajectories of system (10). Then, in
addition to (13), we have to guarantee that R(ζ) ⊂ Z .
However, the error dynamics is defined in the ξ̃-space and thus
it is more convenient to define Z in terms of the bounds on
the ξ̃-space. Then, let the ξ̃-space be defined by the following
rectangle

Ξ̃ := {ξ̃ ∈ R2 : |ξ̃i| ≤ βi, i = 1, 2}, (16)

where βi ∈ R+. Since ζ2
1 = |ξ̃1| and ζ2 = ξ̃2, the resulting

region in the ζ-space can be defined as follows

Z := {ζ ∈ R2 : ζ2
1 ≤ β1, |ζ2| ≤ β2}. (17)

In light of (15) and (17), notice that R(ζ) ⊂ Z can be cast
as follows:

β1 − ζT e1e
T
1 ζ ≥ 0

1± β−1
2 eT2 ζ ≥ 0

}
∀ ζ : V (ζ)− 1 ≤ 0, (18)

where e1 =
[
1 0
]T

and e2 =
[
0 1
]T

. These are satisfied if the
following inequalities hold [8]

τβ1 − 1 ≥ 0, P − τe1e
T
1 ≥ 0,

[
β2

2 eT2
e2 P

]
≥ 0, (19)

where τ is a positive scalar to be determined.
In order to parameterize T ∗c only in terms of λ3 and no

longer as a function of the stability region size (λ1, λ2), it
will be considered an ellipsoidal setR0(ζ) of admissible initial
conditions defined as follows:

R0(ζ) := {ζ ∈ R2 : ζ ′P0ζ ≤ 1}, (20)

such that R0(ζ) ⊆ R(ζ), where P0 > 0 is a given matrix
defining the size of R0(ζ). Thus, it is possible to impose T ∗c
and deduce a lower bound on λ3 following inequality:

λ3 ≥
2λ02√
λ01T ∗c

, (21)

where λ01 and λ02 are the smallest and largest eigenvalues of
P0.

Collorary 1. Consider the system (6) with (5), and the as-
sumptions A1 and A2. Let β1 and β2 be given positive scalars
defining Ξ̃. Let P0 be a given symmetric positive definite
matrix and T ∗c be a given positive scalar. Suppose there exist
matrices P = PT > 0 and L, and positive scalars τ and λ3

satisfying (13), (19) and (21). Then, the origin of the error
dynamics (6) with K = P−1L is regionally asymptotically
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stable. Moreover, for all ξ̃(0) ∈ {ξ̃ ∈ R2 : ζT (ξ̃)P0ζ(ξ̃) ≤ 1}
and t ≥ 0 with P0 − P > 0, the state trajectory satisfies
ξ̃(t) ∈ {ξ̃ ∈ R2 : ζT (ξ̃)Pζ(ξ̃) ≤ 1} and converges to zero in
a finite time Tc ≤ T ∗c .

A. Practical Stability
Assumption A4 imposes that the perturbation δ1(t) vanishes

at the origin. When δ1(t) is persistent, from the observability
properties analysis, it is known that the error system will
be only practically stable (i.e., ‖ξ̃(t)‖ converges to a small
neighborhood of the origin) [5]. In this case, the condition
δ1(t) = g1(t)φi(ξ̃1), |g1(t)| ≤ α1, ξ̃1 = ξ̂1 − ξ1, ∀ ξ̂ ∈ Ξ̂, ξ ∈ Ξ

(22)

can be satisfied for values of ξ̃1 outside a small neighborhood
of zero. More precisely, suppose there exists a positive scalar
w1 such that (22) holds for all ξ̃1 satisfying |ξ̃1| ≥ w1.

Hence, to ensure the practical stability, the line segment
ξ̃1 ∈ [−w1, w1] has to belong to the system stability region.
Equivalently, in the ζ-space, the set

D(ζ) :=
{
ζ ∈ R2 : ζT e1e

T
1 ζ ≤ w1

}
, (23)

should belong to R(ζ), which is a standard LMI problem (see
e.g. [8]). Then, the error system origin is regionally practically
stable (i.e., the invariance condition D(ζ) ⊂ R(ζ) is satisfied)
if the following holds:

1− w1e
T
1 Pe1 ≥ 0. (24)

From a practical point of vue, for the design of a CSTO, it can
be firstly taken α2 = 2d2 (where d2 is such that |δ2(t)| ≤ d2).
Furthermore, it is assumed that a bound α1 on |g1(t)| is known
a priori so that it can be considered w1 = (d1/α1)2 in the
LMI solution of Corollary 1 with (24).

B. Algorithm for STO gain computation
The design procedure resumes:

Algorithm 1 STO design algorithm
1: Identify 2nd order system dynamics as (1).
2: Cast error dynamics following (6) and identify
b(t, y, u), δ1 and δ2.

3: Compute/provide an estimation of d2 ≥ |δ2(t) | and
deduce α2 = 2d2.

4: Compute/provide an estimation of b, b.
5: Set a value for α1.
6: Deduce V , the set of all vertices of the meta set

[−α1, α1]× [−α2, α2]× [b, b]
7: Compute/provide an estimation of d1 ≥ |δ1(t) |
8: Set P0 to fix R0(ζ). . start with P0 = $ I2×2 .
9: Set T ∗c and deduce lower bound on λ3 (21).

10: Following Corollary 1, solve LMIs (13), (19) and deduce
K = P−1L.

11: if LMIs Infeasible then either
12: goto 8: increase the value of $ .
13: goto 9: and increase T ∗c .
Ensure: Fulfillment of (24)
14: if Not then
15: goto 5: and increase α1.

For this application, LMIs are solved with YALMIP as
parser on Matlab with sdpt3 as solver. A more detailed
development of the STO design procedure can be found in
[7].

III. OLIVE OIL PRODUCTION BY Candida rugosa

The proposed methodology is now applied to the design of
STOs for kinetic rate estimation in a lipase production process
from olive oil by Candida rugosa, which model is given by
[9], [10]:

Ṡ1

Ṡ2

Ṡ3

Ė

Ẋ

Ȯ

Ṗ


=



−k1 0 0
1 −k3 0
k2 0 −k6

0 0 k7

0 1 1
0 −k4 −k8

0 k5 k9


ϕ1

ϕ2

ϕ3

−D


S1

S2

S3

E
X
O
P


+



DS1in

DS2in

DS3in

0
0
0
0


−



0
0
0
0
0

QO2

QCO2


(25)

where S1 is the primary substrate concentration (olive oil),
S2 and S3 secondary substrates (respectively glycerol and
fatty acids), E, X , O and P being respectively the en-
zyme, biomass, oxygen and CO2 concentrations. In a compact
matrix-vector notation, the model can be expressed as

ξ̇ = Kϕ(ξ)−Dξ + F −Q (26)

with K the stoichiometric coefficients matrix, ϕ(ξ) =[
ϕ1 ϕ2 ϕ3

]T
the vector of reaction rates, D the dilution

rate, ξ =
[
S1 S2 S3 E X O P

]T
the state vector,

F =
[
DS1in DS2in DS3in 0 0 0 0

]T
the vector of

feed rates and Q =
[
0 0 0 0 0 QO2

QCO2

]T
the

gaseous flow rate vector. The reaction rates are given by:

ϕ1(ξ) = ϕ1(S1, E,X) = µ∗1
S1

Km1 + S1

E

Km2 + E
X = µ1(ξ)X (27)

ϕ2(ξ) = ϕ2(S2, O,X) = µ∗2
S2

Km3 + S2

O

Km4 +O
X = µ2(ξ)X (28)

ϕ3(ξ) = ϕ3(S2, S3, O,X) = µ∗3
S3

(Km5 + S3)(Km6 + S2)

O2

Km7 +O2
X

= µ3(ξ)X (29)

The numerical parameter values are listed in Tables I-II.

TABLE I
KINETIC PARAMETERS VALUES

Parameter Model CSTOs Unit
µ∗1 0.0208 h−1

µ∗2 0.125 h−1

µ∗3 0.833 g/(Lh)
Km1 2 g/L

Km2,Km4,Km6 0.2 g/L
Km3,Km5 1 g/L
Km7 2 g2/L2

(kLa)O2
,(kLa)CO2

0.208 g/L
Osat 0.5 h−1

Psat 15 h−1

|ΨS2 | 0.0002− 0.002 g/(Lh)
|ΨS3

| 0.005− 0.06 g/(Lh)
|ΨX | 0.001− 0.025 g/(Lh)
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IV. SOFTWARE SENSOR DESIGN

A. Kinetic rate estimation - STO design

Assuming S2, S3 and X can be measured on-line, the
following functions are introduced:

ΨS2
=
[
µ1 − k3µ2

]
X (30)

ΨS3
=
[
k2µ1 − k6µ3

]
X (31)

ΨX =
[
µ2 + µ3

]
X (32)

3 STOs will be designed to estimate those intermediate vari-
ables from which the specific reaction rates µ1, µ2, µ3 could
be inferred back-solving system (30)-(31)-(32) as depicted in
(33). Considering the worst-case scenario where very little
knowledge about the kinetic laws is available, the STOs are
designed based on upper and lower bounds for the functions
Ψi. 

µ̂1 =
k3Ψ̂S3

+k6Ψ̂S2
+k3k6Ψ̂X

(X(k6+k2k3))

µ̂2 =
Ψ̂S3
−k2Ψ̂S2

+k6Ψ̂X

(X(k6+k2k3))

µ̂3 =
−Ψ̂S3

+k2Ψ̂S2
+k2k3Ψ̂X

(X(k6+k2k3))

(33)

Following the first step of the algorithm given in subsec-
tion II-B, the following subsystems are defined:

{
Ṡj = ΨSj

+D(Sjin − Sj)
Ψ̇Sj

=
∂ΨSj

∂t =
[
∂ΨSj

∂X

]
.
[
∂X
∂t

]
= ηjxX − ηjdD

(34){
Ẋ = ΨX −DX

Ψ̇X = ∂ΨX

∂t =
[
∂ΨX

∂X

]
.
[
X
∂t

]
= ηxX − ηdD

(35)

with associated STOs (3) :
˙̂
Sj = −k1Sj

φ1(S̃j) + Ψ̂Sj
+D(Sjin − Ŝj)

˙̂
ΨSj = −k2Sj

φ2(S̃j) + η̂jxX̂ − η̂jdD
(36)

{
˙̂
X = −k1X

φ1(X̃) + Ψ̂X −DX̂
˙̂
ΨX = −k2X

φ2(X̃) + η̂xX̂ − η̂dD
(37)

where the η−functions are described in Table III and j ∈
{2, 3}. The estimation error dynamics are now developed so
as to identify the functions b(t, y, u), δ1 and δ2. To this end,
x̃ = x̂ − xn, with x = xn ± xν where x is the measured

TABLE II
YIELD COEFFICIENTS VALUES

Yield Coefficients Value
k1 3
k2 0.3
k3 4.54
k4 1.33
k5 0.34
k6 0.5
k7 0.19
k8 0.72
k9 1.24

value of a given state, xν is the noise contribution and xn the
nominal(true) value. In the ideal case xν = 0. Thus,

˙̃Sj = −k1Sj
φ1(S̃j) + Ψ̂Sj

+D(Sjin − Ŝj)−ΨSj
−D(Sjin − Sj)

→ ˙̃Sj = −k1Sj
φ1(S̃j) + bSΨ̃Sj

+ δ1Sj
(38)

with bS = 1, δ1Sj
= −D(S̃j ±Sjν) from which we deduce: .

d1Sj
= sup|D(∆Sj + |Sjν |)| ≥ |δ1Sj

|. (39)

Similarly,

˙̃X = −k1Xφ1(X̃) + Ψ̂X −DX̂ −ΨX +DX

→ ˙̃X = −k1Xφ1(X̃) + bXΨ̃X + δ1X

with bX = 1, δ1X
= −D(X̃ ±Xν) from which we deduce:

d1X
= sup|D(∆X + |Xν |)| ≥ |δ1X

|. (40)

Finally

δ2 = η̂xX̂ − η̂DD − ηxX + ηDD

→ δ2 = (η̃x − ηx)(X̃ +Xn)− ηx(Xn ±Xν)− η̃dD

From which we deduce:

d2 = sup|(∆ηx + |ηx|)(∆X +Xn) + |ηx|(Xn + |Xν |) + ∆ηdD| ≥ δ2.
(41)

Operator ∆ is defined as:

∆. =
| sup{.} −min{.}|

2
≥ |̃. | (42)

e.g: ∆ηx = | sup{ηx}−min{ηx}|
2 ≥ |η̃x |

B. State estimation - Asymptotic observer design
In [11], a state partition and a linear change of coordi-

nates allow the unmeasured states dynamics to be expressed
as functions of yield coefficients and measured states. The
corresponding asymptotic observer uses S2, S3 and X mea-
surements to reconstruct the unmeasured states S1, E, O,
P which estimates are then used by a high gain observer
for kinetic rate estimation. In the present study, no state
transformation is required as an asymptotic observer can be
obtained straightforwardly, based on the STO rate estimates:

˙̂
S1
˙̂
E
˙̂
O
˙̂
P

 =

−k1 0 0
0 0 k7

0 −k4 −k8

0 k5 k9


ϕ̂1

ϕ̂2

ϕ̂3

−D

Ŝ1

Ê

Ô

P̂

 +

DS1in

0
0
0

−


0
0

Q̂O2

Q̂CO2


(43)

TABLE III
η−FUNCTION DESCRIPTION

Subsystem ηiX ηid

S2/ΨS2

ΨS2
ΨX

X2 ΨS2

S3/ΨS3

ΨS3
ΨX

X2 ΨS3

X/ΨX
Ψ2

X
X2 ΨX
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TABLE IV
d−FUNCTIONS VALUES

Subsystem d1 d2 α1

S2/ΨS2 0.0743 0.0890 1
S3/ΨS3

0.0605 0.0042 0.1
X/ΨX 0.0303 0.0245 1

Proof. The estimation error ξ̃ = ξ̂ − ξ dynamics follow:

˙̃
ξ =

˙̂
ξ − ξ̇

= K
(
ϕ̂(ξ̂)− ϕ(ξ)

)
−D

(
ξ̂ − ξ

)
−
(
Q̂−Q

)
= Kϕ̃−Dξ̃ − Q̃ (44)

where ϕ̃ = ϕ̂(ξ̂) − ϕ(ξ) and Q̃ = Q̂ − Q. Assuming STO
convergence in finite time, ϕ̂(ξ̂)→ ϕ(ξ) such that ϕ̃→ 0 and
(44) becomes:

˙̃
ξ = −λiξ̃ ∀i ∈ {1 . . . 4} (45)

where λ =
[
D D (D + (kLa)O2) (D + (kLa)CO2)

]T
.

In the ideal case (without noise), there is an exponential
decay of the estimation error, with a faster convergence for
O and P .

C. Simulation Results

Simulations are performed using parameters values from
[9], [10] and assuming intervals for Ψi as depicted in Tables I
& II while Fig. 1 shows the Dilution rate pattern [11] .
For this simulation we assume no noise on measurements
→ Xν = Sν = 0, [7] illustrates noisy scenarios. Initial
conditions are respectively x0 = [2 3 4 0.01 0.1 0 0] and
x̂0 = [1.8 3 4 0.02 0.1 0.3 1]

The η and Ψ-functions evolutions with respect to
biomass concentration are plotted in Fig 2 from which the
δ1i,i∈{S2,S3,X} and δ2i,i∈{S2,S3,X} values are deduced follow-
ing (39) - (40)- (41) and presented in Table IV. Finally, STO
gains are obtained following Algorithm 1 with T ∗c = 10 hours
: KS2

=
[
3.1431 1.3798

]T
, KS3

=
[
5.4720 0.4233

]T
and

KX =
[
2.3891 0.7402

]T
.

Fig. 4 and Fig 5 illustrate the good performances of STOs
as a fast convergence of the Ψ̂i and thus of µ̂i to the real
kinetics values is observed. This estimation outperforms the
one presented in [11] where a bias appeared in the kinetic
estimations with the same operating conditions (no noise and
same dilution rate pattern). Finally, Fig 6 shows the asymptotic
observer estimation of the unmeasured states (with a faster
convergence for O and P ).

V. CONCLUSION

In this study, a systematic design procedure for super-
twisting observers (STOs) is applied to monitoring a lipase
production process from olive oil by Candida rugosa. The
kinetic laws can be estimated using 3 STOs, and the results are
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Fig. 1. Time evolution of dilution rate.
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Fig. 2. Evolution of η and Ψ-function with respect to the biomass concen-
tration. Max in ’blue’, min in ’red’, ∆ in ’orange’

fused in an asymptotic observer reconstructing the unmeasured
component concentrations. The main advantage of STOs is
their robustness to unmodelled dynamics and their (usually
fast) convergence in finite time. The existence of a systematic
computational procedure for the observer gains will hopefully
ease their application.
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